Package index
Integrated Pipelines
One-click functions for comprehensive model comparison across multiple algorithms and ensemble methods.
-
int_dia() - Comprehensive Diagnostic Modeling Pipeline
-
int_imbalance() - Imbalanced Data Diagnostic Modeling Pipeline
-
int_pro() - Comprehensive Prognostic Modeling Pipeline
-
plot_integrated_results() - Visualize Integrated Modeling Results
-
models_dia() - Run Multiple Diagnostic Models
-
models_pro() - Run Multiple Prognostic Models
-
bagging_dia() - Train a Bagging Diagnostic Model
-
bagging_pro() - Train Bagging Ensemble for Prognosis
-
voting_dia() - Train a Voting Ensemble Diagnostic Model
-
stacking_dia() - Train a Stacking Diagnostic Model
-
stacking_pro() - Train Stacking Ensemble for Prognosis
-
imbalance_dia() - Train an EasyEnsemble Model for Imbalanced Classification
-
apply_dia() - Apply a Trained Model to New Data
-
apply_pro() - Apply Prognostic Model to New Data
-
evaluate_model_dia() - Evaluate Diagnostic Model Performance
-
evaluate_model_pro() - Evaluate Prognostic Model Performance
-
evaluate_predictions_dia() - Evaluate Predictions from a Data Frame
-
evaluate_predictions_pro() - Evaluate External Predictions
-
figure_dia() - Plot Diagnostic Model Evaluation Figures
-
figure_pro() - Plot Prognostic Model Evaluation Figures
-
figure_shap() - Generate and Plot SHAP Explanation Figures
-
print_model_summary_dia() - Print Diagnostic Model Summary
-
print_model_summary_pro() - Print Prognostic Model Summary
-
initialize_modeling_system_dia() - Initialize Diagnostic Modeling System
-
initialize_modeling_system_pro() - Initialize Prognosis Modeling System
-
register_model_dia() - Register a Diagnostic Model Function
-
register_model_pro() - Register a Prognostic Model
-
get_registered_models_dia() - Get Registered Diagnostic Models
-
get_registered_models_pro() - Get Registered Prognostic Models
Internal & Component Functions
These are lower-level functions, generally not called directly by the user.
-
apply_dia() - Apply a Trained Model to New Data
-
apply_pro() - Apply Prognostic Model to New Data
-
bagging_dia() - Train a Bagging Diagnostic Model
-
bagging_pro() - Train Bagging Ensemble for Prognosis
-
calculate_metrics_at_threshold_dia() - Calculate Classification Metrics at a Specific Threshold
-
dt_dia() - Train a Decision Tree Model for Classification
-
en_dia() - Train an Elastic Net (L1 and L2 Regularized Logistic Regression) Model for Classification
-
en_pro() - Train Elastic Net Cox Model
-
evaluate_model_dia() - Evaluate Diagnostic Model Performance
-
evaluate_model_pro() - Evaluate Prognostic Model Performance
-
evaluate_predictions_dia() - Evaluate Predictions from a Data Frame
-
evaluate_predictions_pro() - Evaluate External Predictions
-
figure_dia() - Plot Diagnostic Model Evaluation Figures
-
figure_pro() - Plot Prognostic Model Evaluation Figures
-
find_optimal_threshold_dia() - Find Optimal Probability Threshold
-
gbm_dia() - Train a Gradient Boosting Machine (GBM) Model for Classification
-
gbm_pro() - Train Gradient Boosting Machine (GBM) for Survival
-
get_registered_models_dia() - Get Registered Diagnostic Models
-
get_registered_models_pro() - Get Registered Prognostic Models
-
imbalance_dia() - Train an EasyEnsemble Model for Imbalanced Classification
-
initialize_modeling_system_dia() - Initialize Diagnostic Modeling System
-
initialize_modeling_system_pro() - Initialize Prognosis Modeling System
-
int_dia() - Comprehensive Diagnostic Modeling Pipeline
-
int_pro() - Comprehensive Prognostic Modeling Pipeline
-
lasso_dia() - Train a Lasso (L1 Regularized Logistic Regression) Model for Classification
-
lasso_pro() - Train Lasso Cox Proportional Hazards Model
-
lda_dia() - Train a Linear Discriminant Analysis (LDA) Model for Classification
-
load_and_prepare_data_dia() - Load and Prepare Data for Diagnostic Models
-
mlp_dia() - Train a Multi-Layer Perceptron (Neural Network) Model for Classification
-
models_dia() - Run Multiple Diagnostic Models
-
models_pro() - Run Multiple Prognostic Models
-
nb_dia() - Train a Naive Bayes Model for Classification
-
pls_pro() - Train Partial Least Squares Cox (PLS-Cox)
-
predict_pro() - Generic Prediction Interface for Prognostic Models
-
print_model_summary_dia() - Print Diagnostic Model Summary
-
print_model_summary_pro() - Print Prognostic Model Summary
-
qda_dia() - Train a Quadratic Discriminant Analysis (QDA) Model for Classification
-
register_model_dia() - Register a Diagnostic Model Function
-
register_model_pro() - Register a Prognostic Model
-
rf_dia() - Train a Random Forest Model for Classification
-
ridge_dia() - Train a Ridge (L2 Regularized Logistic Regression) Model for Classification
-
ridge_pro() - Train Ridge Cox Model
-
rsf_pro() - Train Random Survival Forest (RSF)
-
stacking_dia() - Train a Stacking Diagnostic Model
-
stacking_pro() - Train Stacking Ensemble for Prognosis
-
stepcox_pro() - Train Stepwise Cox Model (AIC-based)
-
svm_dia() - Train a Support Vector Machine (Linear Kernel) Model for Classification
-
test_dia - Test Data for Diagnostic Models
-
test_pro - Test Data for Prognostic (Survival) Models
-
train_dia - Training Data for Diagnostic Models
-
train_pro - Training Data for Prognostic (Survival) Models
-
voting_dia() - Train a Voting Ensemble Diagnostic Model
-
xb_dia() - Train an XGBoost Tree Model for Classification
-
xgb_pro() - Train XGBoost Cox Model
-
min_max_normalize() - Min-Max Normalization
-
Surv - re-export Surv from survival