Skip to contents

Integrated Pipelines

One-click functions for comprehensive model comparison across multiple algorithms and ensemble methods.

int_dia()
Comprehensive Diagnostic Modeling Pipeline
int_imbalance()
Imbalanced Data Diagnostic Modeling Pipeline
int_pro()
Comprehensive Prognostic Modeling Pipeline
plot_integrated_results()
Visualize Integrated Modeling Results

Core Modeling Functions

Main functions for building and evaluating models.

models_dia()
Run Multiple Diagnostic Models
models_pro()
Run Multiple Prognostic Models
bagging_dia()
Train a Bagging Diagnostic Model
bagging_pro()
Train Bagging Ensemble for Prognosis
voting_dia()
Train a Voting Ensemble Diagnostic Model
stacking_dia()
Train a Stacking Diagnostic Model
stacking_pro()
Train Stacking Ensemble for Prognosis
imbalance_dia()
Train an EasyEnsemble Model for Imbalanced Classification

Helpers & Visualization

Functions for applying, evaluating, visualizing, and explaining models.

apply_dia()
Apply a Trained Model to New Data
apply_pro()
Apply Prognostic Model to New Data
evaluate_model_dia()
Evaluate Diagnostic Model Performance
evaluate_model_pro()
Evaluate Prognostic Model Performance
evaluate_predictions_dia()
Evaluate Predictions from a Data Frame
evaluate_predictions_pro()
Evaluate External Predictions
figure_dia()
Plot Diagnostic Model Evaluation Figures
figure_pro()
Plot Prognostic Model Evaluation Figures
figure_shap()
Generate and Plot SHAP Explanation Figures
print_model_summary_dia()
Print Diagnostic Model Summary
print_model_summary_pro()
Print Prognostic Model Summary

Setup & Customization

Functions for initialization and framework extension.

initialize_modeling_system_dia()
Initialize Diagnostic Modeling System
initialize_modeling_system_pro()
Initialize Prognosis Modeling System
register_model_dia()
Register a Diagnostic Model Function
register_model_pro()
Register a Prognostic Model
get_registered_models_dia()
Get Registered Diagnostic Models
get_registered_models_pro()
Get Registered Prognostic Models

Datasets

Example datasets included with the package.

train_dia
Training Data for Diagnostic Models
test_dia
Test Data for Diagnostic Models
train_pro
Training Data for Prognostic (Survival) Models
test_pro
Test Data for Prognostic (Survival) Models

Internal & Component Functions

These are lower-level functions, generally not called directly by the user.

apply_dia()
Apply a Trained Model to New Data
apply_pro()
Apply Prognostic Model to New Data
bagging_dia()
Train a Bagging Diagnostic Model
bagging_pro()
Train Bagging Ensemble for Prognosis
calculate_metrics_at_threshold_dia()
Calculate Classification Metrics at a Specific Threshold
dt_dia()
Train a Decision Tree Model for Classification
en_dia()
Train an Elastic Net (L1 and L2 Regularized Logistic Regression) Model for Classification
en_pro()
Train Elastic Net Cox Model
evaluate_model_dia()
Evaluate Diagnostic Model Performance
evaluate_model_pro()
Evaluate Prognostic Model Performance
evaluate_predictions_dia()
Evaluate Predictions from a Data Frame
evaluate_predictions_pro()
Evaluate External Predictions
figure_dia()
Plot Diagnostic Model Evaluation Figures
figure_pro()
Plot Prognostic Model Evaluation Figures
find_optimal_threshold_dia()
Find Optimal Probability Threshold
gbm_dia()
Train a Gradient Boosting Machine (GBM) Model for Classification
gbm_pro()
Train Gradient Boosting Machine (GBM) for Survival
get_registered_models_dia()
Get Registered Diagnostic Models
get_registered_models_pro()
Get Registered Prognostic Models
imbalance_dia()
Train an EasyEnsemble Model for Imbalanced Classification
initialize_modeling_system_dia()
Initialize Diagnostic Modeling System
initialize_modeling_system_pro()
Initialize Prognosis Modeling System
int_dia()
Comprehensive Diagnostic Modeling Pipeline
int_pro()
Comprehensive Prognostic Modeling Pipeline
lasso_dia()
Train a Lasso (L1 Regularized Logistic Regression) Model for Classification
lasso_pro()
Train Lasso Cox Proportional Hazards Model
lda_dia()
Train a Linear Discriminant Analysis (LDA) Model for Classification
load_and_prepare_data_dia()
Load and Prepare Data for Diagnostic Models
mlp_dia()
Train a Multi-Layer Perceptron (Neural Network) Model for Classification
models_dia()
Run Multiple Diagnostic Models
models_pro()
Run Multiple Prognostic Models
nb_dia()
Train a Naive Bayes Model for Classification
pls_pro()
Train Partial Least Squares Cox (PLS-Cox)
predict_pro()
Generic Prediction Interface for Prognostic Models
print_model_summary_dia()
Print Diagnostic Model Summary
print_model_summary_pro()
Print Prognostic Model Summary
qda_dia()
Train a Quadratic Discriminant Analysis (QDA) Model for Classification
register_model_dia()
Register a Diagnostic Model Function
register_model_pro()
Register a Prognostic Model
rf_dia()
Train a Random Forest Model for Classification
ridge_dia()
Train a Ridge (L2 Regularized Logistic Regression) Model for Classification
ridge_pro()
Train Ridge Cox Model
rsf_pro()
Train Random Survival Forest (RSF)
stacking_dia()
Train a Stacking Diagnostic Model
stacking_pro()
Train Stacking Ensemble for Prognosis
stepcox_pro()
Train Stepwise Cox Model (AIC-based)
svm_dia()
Train a Support Vector Machine (Linear Kernel) Model for Classification
test_dia
Test Data for Diagnostic Models
test_pro
Test Data for Prognostic (Survival) Models
train_dia
Training Data for Diagnostic Models
train_pro
Training Data for Prognostic (Survival) Models
voting_dia()
Train a Voting Ensemble Diagnostic Model
xb_dia()
Train an XGBoost Tree Model for Classification
xgb_pro()
Train XGBoost Cox Model
min_max_normalize()
Min-Max Normalization
Surv
re-export Surv from survival