Package index
-
models_dia()
- Run Multiple Diagnostic Models
-
models_pro()
- Run Multiple Prognostic Models
-
bagging_dia()
- Train a Bagging Diagnostic Model
-
bagging_pro()
- Train a Bagging Prognostic Model
-
voting_dia()
- Train a Voting Ensemble Diagnostic Model
-
stacking_dia()
- Train a Stacking Diagnostic Model
-
stacking_pro()
- Train a Stacking Prognostic Model
-
imbalance_dia()
- Train an EasyEnsemble Model for Imbalanced Classification
-
apply_dia()
- Apply a Trained Diagnostic Model to New Data
-
apply_pro()
- Apply a Trained Prognostic Model to New Data
-
evaluate_model_dia()
- Evaluate Diagnostic Model Performance
-
evaluate_model_pro()
- Evaluate Prognostic Model Performance
-
evaluate_predictions_pro()
- Evaluate Prognostic Predictions
-
figure_dia()
- Plot Diagnostic Model Evaluation Figures
-
figure_pro()
- Plot Prognostic Model Evaluation Figures
-
figure_shap()
- Generate and Plot SHAP Explanation Figures
-
print_model_summary_dia()
- Print Diagnostic Model Summary
-
print_model_summary_pro()
- Print Prognostic Model Summary
-
initialize_modeling_system_dia()
- Initialize Diagnostic Modeling System
-
initialize_modeling_system_pro()
- Initialize Prognostic Modeling System
-
register_model_dia()
- Register a Diagnostic Model Function
-
register_model_pro()
- Register a Prognostic Model Function
-
get_registered_models_dia()
- Get Registered Diagnostic Models
-
get_registered_models_pro()
- Get Registered Prognostic Models
-
train_dia
- Training Data for Diagnostic Models
-
test_dia
- Test Data for Diagnostic Models
-
train_pro
- Training Data for Prognostic (Survival) Models
-
test_pro
- Test Data for Prognostic (Survival) Models
Internal & Component Functions
These are lower-level functions, generally not called directly by the user.
-
apply_dia()
- Apply a Trained Diagnostic Model to New Data
-
apply_pro()
- Apply a Trained Prognostic Model to New Data
-
bagging_dia()
- Train a Bagging Diagnostic Model
-
bagging_pro()
- Train a Bagging Prognostic Model
-
calculate_metrics_at_threshold_dia()
- Calculate Classification Metrics at a Specific Threshold
-
dt_dia()
- Train a Decision Tree Model for Classification
-
en_dia()
- Train an Elastic Net (L1 and L2 Regularized Logistic Regression) Model for Classification
-
en_pro()
- Train an Elastic Net Cox Proportional Hazards Model
-
evaluate_model_dia()
- Evaluate Diagnostic Model Performance
-
evaluate_model_pro()
- Evaluate Prognostic Model Performance
-
evaluate_predictions_pro()
- Evaluate Prognostic Predictions
-
figure_dia()
- Plot Diagnostic Model Evaluation Figures
-
figure_pro()
- Plot Prognostic Model Evaluation Figures
-
find_optimal_threshold_dia()
- Find Optimal Probability Threshold
-
gbm_dia()
- Train a Gradient Boosting Machine (GBM) Model for Classification
-
gbm_pro()
- Train a Gradient Boosting Machine (GBM) for Survival Data
-
get_registered_models_dia()
- Get Registered Diagnostic Models
-
get_registered_models_pro()
- Get Registered Prognostic Models
-
imbalance_dia()
- Train an EasyEnsemble Model for Imbalanced Classification
-
initialize_modeling_system_dia()
- Initialize Diagnostic Modeling System
-
initialize_modeling_system_pro()
- Initialize Prognostic Modeling System
-
lasso_dia()
- Train a Lasso (L1 Regularized Logistic Regression) Model for Classification
-
lasso_pro()
- Train a Lasso Cox Proportional Hazards Model
-
lda_dia()
- Train a Linear Discriminant Analysis (LDA) Model for Classification
-
load_and_prepare_data_dia()
- Load and Prepare Data for Diagnostic Models
-
load_and_prepare_data_pro()
- Load and Prepare Data for Prognostic Models
-
mlp_dia()
- Train a Multi-Layer Perceptron (Neural Network) Model for Classification
-
models_dia()
- Run Multiple Diagnostic Models
-
models_pro()
- Run Multiple Prognostic Models
-
nb_dia()
- Train a Naive Bayes Model for Classification
-
print_model_summary_dia()
- Print Diagnostic Model Summary
-
print_model_summary_pro()
- Print Prognostic Model Summary
-
qda_dia()
- Train a Quadratic Discriminant Analysis (QDA) Model for Classification
-
register_model_dia()
- Register a Diagnostic Model Function
-
register_model_pro()
- Register a Prognostic Model Function
-
rf_dia()
- Train a Random Forest Model for Classification
-
ridge_dia()
- Train a Ridge (L2 Regularized Logistic Regression) Model for Classification
-
ridge_pro()
- Train a Ridge Cox Proportional Hazards Model
-
rsf_pro()
- Train a Random Survival Forest Model
-
stacking_dia()
- Train a Stacking Diagnostic Model
-
stacking_pro()
- Train a Stacking Prognostic Model
-
stepcox_pro()
- Train a Stepwise Cox Proportional Hazards Model
-
svm_dia()
- Train a Support Vector Machine (Linear Kernel) Model for Classification
-
test_dia
- Test Data for Diagnostic Models
-
test_pro
- Test Data for Prognostic (Survival) Models
-
train_dia
- Training Data for Diagnostic Models
-
train_pro
- Training Data for Prognostic (Survival) Models
-
voting_dia()
- Train a Voting Ensemble Diagnostic Model
-
xb_dia()
- Train an XGBoost Tree Model for Classification
-
min_max_normalize()
- Min-Max Normalization
-
Surv
- re-export Surv from survival