Evaluates model performance from a data frame of predictions,
calculating metrics like AUROC, AUPRC, F1 score, etc. This function is designed
for use with prediction results, such as the output from apply_dia
.
Usage
evaluate_predictions_dia(
prediction_df,
threshold_choices = "default",
pos_class = "Positive",
neg_class = "Negative"
)
Arguments
- prediction_df
A data frame containing predictions. Must contain the columns
sample
,label
(true labels), andscore
(predicted probabilities).- threshold_choices
A character string specifying the thresholding strategy ("default", "f1", "youden") or a numeric probability threshold value (0-1).
- pos_class
A character string for the positive class label used in reporting. Defaults to
"Positive"
.- neg_class
A character string for the negative class label used in reporting. Defaults to
"Negative"
.
Details
This function strictly requires the label
column in prediction_df
to adhere
to the following format:
1
: Represents the positive class.0
: Represents the negative class.NA
: Will be ignored during calculation.
The function will stop with an error if any other values are found in the label
column.
Examples
# \donttest{
# # Create a sample prediction data frame
# predictions_df <- data.frame(
# sample = 1:10,
# label = c(1, 0, 1, 1, 0, 0, 1, 0, 1, 0),
# score = c(0.9, 0.2, 0.8, 0.6, 0.3, 0.4, 0.95, 0.1, 0.7, 0.5)
# )
#
# # Evaluate the predictions using the 'f1' threshold strategy
# evaluation_results <- evaluate_predictions_dia(
# prediction_df = predictions_df,
# threshold_choices = "f1"
# )
#
# print(evaluation_results)
# }