Applies a previously trained prognostic model (or ensemble) to a new, unseen dataset to generate prognostic scores.
Arguments
- trained_model_object
A trained model object, as returned by
models_pro
,bagging_pro
, orstacking_pro
.- new_data
A data frame containing the new data for prediction. It should follow the same structure as the training data: ID, Outcome, Time, Features. The outcome and time columns are used for data preparation and can be included in the output, but the model's prediction only uses the features. If outcome/time are unknown, they can be filled with NA.
- time_unit
A character string, the unit of time in the third column of
new_data
.
Examples
# \donttest{
# NOTE: This example requires 'train_pro' and 'test_pro' datasets.
if (requireNamespace("E2E", quietly = TRUE) &&
"train_pro" %in% utils::data(package = "E2E")$results[,3] &&
"test_pro" %in% utils::data(package = "E2E")$results[,3]) {
data(train_pro, package = "E2E")
data(test_pro, package = "E2E")
initialize_modeling_system_pro()
train_results <- models_pro(data = train_pro, model = "lasso_pro")
trained_lasso_model <- train_results$lasso_pro$model_object
# Apply the trained model to new data
new_data_predictions <- apply_pro(
trained_model_object = trained_lasso_model,
new_data = test_pro,
time_unit = "day" # Specify time unit of test_pro
)
utils::head(new_data_predictions)
}
#> Prognosis modeling system initialized and default models registered.
#> Running model: lasso_pro
#> Applying model on new data...
#> ID outcome time score
#> 1 TCGA-AN-A0AM-01A-11R-A034-07 0 5 -0.2218588
#> 2 TCGA-AN-A0XR-01A-11R-A109-07 0 10 0.3724818
#> 3 TCGA-AN-A0XT-01A-11R-A109-07 0 10 1.4469934
#> 4 TCGA-AN-A0AT-01A-11R-A034-07 0 10 0.2098832
#> 5 TCGA-AN-A03X-01A-21R-A00Z-07 0 10 0.7699643
#> 6 TCGA-AN-A0XS-01A-22R-A109-07 0 10 0.2374950
# }