Trains a Gradient Boosting Machine (GBM) model using caret::train
for binary classification.
Value
A caret::train
object representing the trained GBM model.
Examples
# \donttest{
set.seed(42)
n_obs <- 200
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
gbm_model <- gbm_dia(X_toy, y_toy)
print(gbm_model)
#> Stochastic Gradient Boosting
#>
#> 200 samples
#> 2 predictor
#> 2 classes: 'Control', 'Case'
#>
#> No pre-processing
#> Resampling: Cross-Validated (5 fold)
#> Summary of sample sizes: 161, 159, 160, 160, 160
#> Resampling results:
#>
#> ROC Sens Spec
#> 0.4855489 0.4684211 0.5104762
#>
#> Tuning parameter 'n.trees' was held constant at a value of 100
#> Tuning
#>
#> Tuning parameter 'shrinkage' was held constant at a value of 0.1
#>
#> Tuning parameter 'n.minobsinnode' was held constant at a value of 10
# }