Skip to contents

A training dataset for prognostic models, containing sample IDs, survival outcomes (time and event status), and gene expression features.

Usage

train_pro

Format

A data frame with rows for samples and 31 columns:

sample

character. Unique identifier for each sample.

outcome

integer. The event status, where 1 indicates an event occurred and 0 indicates censoring.

time

numeric. The time to event or censoring.

AC004990.1

numeric. Gene expression level.

AC055854.1

numeric. Gene expression level.

AC084212.1

numeric. Gene expression level.

AC092118.1

numeric. Gene expression level.

AC093515.1

numeric. Gene expression level.

AC104211.1

numeric. Gene expression level.

AC105046.1

numeric. Gene expression level.

AC105219.1

numeric. Gene expression level.

AC110772.2

numeric. Gene expression level.

AC133644.1

numeric. Gene expression level.

AL133467.1

numeric. Gene expression level.

AL391845.2

numeric. Gene expression level.

AL590434.1

numeric. Gene expression level.

AL603840.1

numeric. Gene expression level.

AP000851.2

numeric. Gene expression level.

AP001434.1

numeric. Gene expression level.

C9orf163

numeric. Gene expression level.

FAM153CP

numeric. Gene expression level.

HOTAIR

numeric. Gene expression level.

HYMAI

numeric. Gene expression level.

LINC00165

numeric. Gene expression level.

LINC01028

numeric. Gene expression level.

LINC01152

numeric. Gene expression level.

LINC01497

numeric. Gene expression level.

LINC01614

numeric. Gene expression level.

LINC01929

numeric. Gene expression level.

LINC02408

numeric. Gene expression level.

SIRLNT

numeric. Gene expression level.

Source

Stored in data/train_pro.rda.

Details

This dataset is used to train machine learning models for prognosis. The features are typically gene expression values.