Trains a Naive Bayes model using caret::train
for binary classification.
Value
A caret::train
object representing the trained Naive Bayes model.
Examples
# \donttest{
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
nb_model <- nb_dia(X_toy, y_toy)
print(nb_model)
#> Naive Bayes
#>
#> 50 samples
#> 2 predictor
#> 2 classes: 'Control', 'Case'
#>
#> No pre-processing
#> Resampling: Cross-Validated (5 fold)
#> Summary of sample sizes: 40, 40, 40, 40, 40
#> Resampling results:
#>
#> ROC Sens Spec
#> 0.3916667 0.1 0.8333333
#>
#> Tuning parameter 'fL' was held constant at a value of 0
#> Tuning
#> parameter 'usekernel' was held constant at a value of TRUE
#> Tuning
#> parameter 'adjust' was held constant at a value of 1
# }